Cremona's table of elliptic curves

Curve 103320bc1

103320 = 23 · 32 · 5 · 7 · 41



Data for elliptic curve 103320bc1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 7+ 41- Signs for the Atkin-Lehner involutions
Class 103320bc Isogeny class
Conductor 103320 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 516096 Modular degree for the optimal curve
Δ 205077087245520 = 24 · 312 · 5 · 76 · 41 Discriminant
Eigenvalues 2- 3- 5+ 7+  6  2 -6 -6 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-28398,-1708243] [a1,a2,a3,a4,a6]
j 217139816114176/17582054805 j-invariant
L 1.4786482940275 L(r)(E,1)/r!
Ω 0.36966204120121 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 34440d1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations