Cremona's table of elliptic curves

Curve 103350be1

103350 = 2 · 3 · 52 · 13 · 53



Data for elliptic curve 103350be1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 13+ 53- Signs for the Atkin-Lehner involutions
Class 103350be Isogeny class
Conductor 103350 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 53760 Modular degree for the optimal curve
Δ -1937812500 = -1 · 22 · 32 · 57 · 13 · 53 Discriminant
Eigenvalues 2- 3+ 5+  0  3 13+  0 -6 Hecke eigenvalues for primes up to 20
Equation [1,1,1,162,2031] [a1,a2,a3,a4,a6]
Generators [25:137:1] Generators of the group modulo torsion
j 30080231/124020 j-invariant
L 9.2303738521157 L(r)(E,1)/r!
Ω 1.0551645962427 Real period
R 1.093475594415 Regulator
r 1 Rank of the group of rational points
S 0.99999999777459 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 20670n1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations