Cremona's table of elliptic curves

Curve 103675r1

103675 = 52 · 11 · 13 · 29



Data for elliptic curve 103675r1

Field Data Notes
Atkin-Lehner 5+ 11- 13+ 29- Signs for the Atkin-Lehner involutions
Class 103675r Isogeny class
Conductor 103675 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 69120 Modular degree for the optimal curve
Δ -40498046875 = -1 · 510 · 11 · 13 · 29 Discriminant
Eigenvalues -1 -2 5+  3 11- 13+ -3 -4 Hecke eigenvalues for primes up to 20
Equation [1,0,0,812,3867] [a1,a2,a3,a4,a6]
Generators [-3:39:1] Generators of the group modulo torsion
j 3789119879/2591875 j-invariant
L 2.5975397105608 L(r)(E,1)/r!
Ω 0.72341128756504 Real period
R 1.7953408734334 Regulator
r 1 Rank of the group of rational points
S 1.000000001857 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 20735q1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations