Cremona's table of elliptic curves

Curve 104025d2

104025 = 3 · 52 · 19 · 73



Data for elliptic curve 104025d2

Field Data Notes
Atkin-Lehner 3+ 5+ 19+ 73- Signs for the Atkin-Lehner involutions
Class 104025d Isogeny class
Conductor 104025 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ 355960546875 = 32 · 58 · 19 · 732 Discriminant
Eigenvalues -1 3+ 5+ -4  0 -2 -6 19+ Hecke eigenvalues for primes up to 20
Equation [1,1,1,-1963,16406] [a1,a2,a3,a4,a6]
Generators [-46:132:1] [-25:237:1] Generators of the group modulo torsion
j 53540005609/22781475 j-invariant
L 4.9520009619007 L(r)(E,1)/r!
Ω 0.86425005224727 Real period
R 1.4324560784811 Regulator
r 2 Rank of the group of rational points
S 0.99999999984323 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 20805e2 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations