Cremona's table of elliptic curves

Curve 104550r1

104550 = 2 · 3 · 52 · 17 · 41



Data for elliptic curve 104550r1

Field Data Notes
Atkin-Lehner 2+ 3+ 5- 17- 41- Signs for the Atkin-Lehner involutions
Class 104550r Isogeny class
Conductor 104550 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 13939200 Modular degree for the optimal curve
Δ 3.280389722712E+20 Discriminant
Eigenvalues 2+ 3+ 5-  3 -5  0 17- -5 Hecke eigenvalues for primes up to 20
Equation [1,1,0,-39990825,97318837125] [a1,a2,a3,a4,a6]
j 18106928439685652516665/839779769014272 j-invariant
L 1.2907960891564 L(r)(E,1)/r!
Ω 0.16134946243929 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 4 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 104550cb1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations