Cremona's table of elliptic curves

Curve 105105r1

105105 = 3 · 5 · 72 · 11 · 13



Data for elliptic curve 105105r1

Field Data Notes
Atkin-Lehner 3+ 5+ 7- 11- 13- Signs for the Atkin-Lehner involutions
Class 105105r Isogeny class
Conductor 105105 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 524160 Modular degree for the optimal curve
Δ -2540379638671875 = -1 · 33 · 513 · 72 · 112 · 13 Discriminant
Eigenvalues  0 3+ 5+ 7- 11- 13- -5 -6 Hecke eigenvalues for primes up to 20
Equation [0,-1,1,-108901,14079666] [a1,a2,a3,a4,a6]
j -2914923914834477056/51844482421875 j-invariant
L 0.91507079285313 L(r)(E,1)/r!
Ω 0.45753546025659 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 105105cf1 Quadratic twists by: -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations