Cremona's table of elliptic curves

Curve 10614g1

10614 = 2 · 3 · 29 · 61



Data for elliptic curve 10614g1

Field Data Notes
Atkin-Lehner 2+ 3- 29- 61+ Signs for the Atkin-Lehner involutions
Class 10614g Isogeny class
Conductor 10614 Conductor
∏ cp 18 Product of Tamagawa factors cp
deg 39168 Modular degree for the optimal curve
Δ -321164366708736 = -1 · 217 · 33 · 293 · 612 Discriminant
Eigenvalues 2+ 3-  1  1  0  0 -3 -3 Hecke eigenvalues for primes up to 20
Equation [1,0,1,-66443,6642614] [a1,a2,a3,a4,a6]
Generators [-6:2656:1] Generators of the group modulo torsion
j -32438593532957924521/321164366708736 j-invariant
L 4.3976256974406 L(r)(E,1)/r!
Ω 0.54536795132794 Real period
R 0.44797744009675 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 84912q1 31842u1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations