Cremona's table of elliptic curves

Curve 106400ct1

106400 = 25 · 52 · 7 · 19



Data for elliptic curve 106400ct1

Field Data Notes
Atkin-Lehner 2- 5- 7- 19- Signs for the Atkin-Lehner involutions
Class 106400ct Isogeny class
Conductor 106400 Conductor
∏ cp 6 Product of Tamagawa factors cp
deg 119808 Modular degree for the optimal curve
Δ 1920520000 = 26 · 54 · 7 · 193 Discriminant
Eigenvalues 2- -3 5- 7-  3  7  2 19- Hecke eigenvalues for primes up to 20
Equation [0,0,0,-325,-800] [a1,a2,a3,a4,a6]
Generators [-11:38:1] Generators of the group modulo torsion
j 94910400/48013 j-invariant
L 5.0826393103225 L(r)(E,1)/r!
Ω 1.1860453980956 Real period
R 0.7142277619354 Regulator
r 1 Rank of the group of rational points
S 1.0000000017528 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 106400cj1 106400i1 Quadratic twists by: -4 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations