Cremona's table of elliptic curves

Curve 106800bj3

106800 = 24 · 3 · 52 · 89



Data for elliptic curve 106800bj3

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 89- Signs for the Atkin-Lehner involutions
Class 106800bj Isogeny class
Conductor 106800 Conductor
∏ cp 64 Product of Tamagawa factors cp
Δ -1.3172858982432E+21 Discriminant
Eigenvalues 2- 3+ 5+  4 -4 -2 -2 -4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-5240008,4937798512] [a1,a2,a3,a4,a6]
Generators [-438:84550:1] Generators of the group modulo torsion
j -248622066042206401/20582592160050 j-invariant
L 5.2838822943072 L(r)(E,1)/r!
Ω 0.1494946468147 Real period
R 2.2090599861388 Regulator
r 1 Rank of the group of rational points
S 1.000000002949 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 13350h4 21360p3 Quadratic twists by: -4 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations