Cremona's table of elliptic curves

Curve 107184cq1

107184 = 24 · 3 · 7 · 11 · 29



Data for elliptic curve 107184cq1

Field Data Notes
Atkin-Lehner 2- 3- 7- 11+ 29+ Signs for the Atkin-Lehner involutions
Class 107184cq Isogeny class
Conductor 107184 Conductor
∏ cp 120 Product of Tamagawa factors cp
deg 2903040 Modular degree for the optimal curve
Δ 1709768070056116224 = 230 · 33 · 75 · 112 · 29 Discriminant
Eigenvalues 2- 3- -2 7- 11+ -2 -4 -4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-4416664,-3573561964] [a1,a2,a3,a4,a6]
Generators [-1225:294:1] [-1204:462:1] Generators of the group modulo torsion
j 2326199438189447749657/417423845228544 j-invariant
L 12.511716832145 L(r)(E,1)/r!
Ω 0.10414313154002 Real period
R 4.0046541874302 Regulator
r 2 Rank of the group of rational points
S 0.99999999981855 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 13398b1 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations