Cremona's table of elliptic curves

Curve 107310u1

107310 = 2 · 3 · 5 · 72 · 73



Data for elliptic curve 107310u1

Field Data Notes
Atkin-Lehner 2+ 3+ 5- 7- 73+ Signs for the Atkin-Lehner involutions
Class 107310u Isogeny class
Conductor 107310 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 532480 Modular degree for the optimal curve
Δ -3076792320000 = -1 · 216 · 3 · 54 · 73 · 73 Discriminant
Eigenvalues 2+ 3+ 5- 7-  2 -7  6 -1 Hecke eigenvalues for primes up to 20
Equation [1,1,0,-82527,-9160059] [a1,a2,a3,a4,a6]
Generators [622:13129:1] Generators of the group modulo torsion
j -181228288379569327/8970240000 j-invariant
L 3.8696023852856 L(r)(E,1)/r!
Ω 0.14083758503972 Real period
R 1.7172273125065 Regulator
r 1 Rank of the group of rational points
S 1.0000000058825 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 107310bk1 Quadratic twists by: -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations