Cremona's table of elliptic curves

Curve 107328o1

107328 = 26 · 3 · 13 · 43



Data for elliptic curve 107328o1

Field Data Notes
Atkin-Lehner 2+ 3+ 13- 43- Signs for the Atkin-Lehner involutions
Class 107328o Isogeny class
Conductor 107328 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 86016 Modular degree for the optimal curve
Δ 1993724928 = 210 · 34 · 13 · 432 Discriminant
Eigenvalues 2+ 3+  4  0 -2 13- -2  0 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-1461,-20907] [a1,a2,a3,a4,a6]
Generators [2604:23005:27] Generators of the group modulo torsion
j 337032380416/1946997 j-invariant
L 7.8613474523323 L(r)(E,1)/r!
Ω 0.77243744316944 Real period
R 5.0886628342386 Regulator
r 1 Rank of the group of rational points
S 1.0000000044103 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 107328cj1 6708g1 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations