Cremona's table of elliptic curves

Curve 107632g1

107632 = 24 · 7 · 312



Data for elliptic curve 107632g1

Field Data Notes
Atkin-Lehner 2- 7+ 31- Signs for the Atkin-Lehner involutions
Class 107632g Isogeny class
Conductor 107632 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 1105920 Modular degree for the optimal curve
Δ -403886935956783104 = -1 · 221 · 7 · 317 Discriminant
Eigenvalues 2-  1  3 7+  0  4  6 -2 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-61824,31123124] [a1,a2,a3,a4,a6]
Generators [113780:3376954:125] Generators of the group modulo torsion
j -7189057/111104 j-invariant
L 10.604988471325 L(r)(E,1)/r!
Ω 0.25313310360686 Real period
R 5.2368636645608 Regulator
r 1 Rank of the group of rational points
S 1.0000000047821 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 13454g1 3472d1 Quadratic twists by: -4 -31


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations