Cremona's table of elliptic curves

Curve 10830c1

10830 = 2 · 3 · 5 · 192



Data for elliptic curve 10830c1

Field Data Notes
Atkin-Lehner 2+ 3+ 5+ 19- Signs for the Atkin-Lehner involutions
Class 10830c Isogeny class
Conductor 10830 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 246240 Modular degree for the optimal curve
Δ -4469547301936929000 = -1 · 23 · 36 · 53 · 1910 Discriminant
Eigenvalues 2+ 3+ 5+ -1 -3 -2 -6 19- Hecke eigenvalues for primes up to 20
Equation [1,1,0,192767,96438973] [a1,a2,a3,a4,a6]
j 129205871/729000 j-invariant
L 0.35402332653891 L(r)(E,1)/r!
Ω 0.17701166326945 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 86640dg1 32490by1 54150cm1 10830ba1 Quadratic twists by: -4 -3 5 -19


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations