Cremona's table of elliptic curves

Curve 10890be1

10890 = 2 · 32 · 5 · 112



Data for elliptic curve 10890be1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 11- Signs for the Atkin-Lehner involutions
Class 10890be Isogeny class
Conductor 10890 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 2304 Modular degree for the optimal curve
Δ 32670 = 2 · 33 · 5 · 112 Discriminant
Eigenvalues 2- 3+ 5+  1 11- -5  3  7 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-188,-943] [a1,a2,a3,a4,a6]
Generators [-492:223:64] Generators of the group modulo torsion
j 223810587/10 j-invariant
L 6.5677802835558 L(r)(E,1)/r!
Ω 1.2898579405703 Real period
R 2.5459316398254 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 87120cx1 10890h2 54450j1 10890b1 Quadratic twists by: -4 -3 5 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations