Cremona's table of elliptic curves

Curve 109200eg2

109200 = 24 · 3 · 52 · 7 · 13



Data for elliptic curve 109200eg2

Field Data Notes
Atkin-Lehner 2- 3+ 5- 7+ 13+ Signs for the Atkin-Lehner involutions
Class 109200eg Isogeny class
Conductor 109200 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 1467648000000000 = 217 · 32 · 59 · 72 · 13 Discriminant
Eigenvalues 2- 3+ 5- 7+  0 13+ -4  0 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-4438208,3600294912] [a1,a2,a3,a4,a6]
Generators [-1408:84000:1] Generators of the group modulo torsion
j 1208528172090413/183456 j-invariant
L 5.2252049122591 L(r)(E,1)/r!
Ω 0.37427304112542 Real period
R 1.7451179846793 Regulator
r 1 Rank of the group of rational points
S 0.99999999813798 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 13650de2 109200hi2 Quadratic twists by: -4 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations