Cremona's table of elliptic curves

Curve 109275q1

109275 = 3 · 52 · 31 · 47



Data for elliptic curve 109275q1

Field Data Notes
Atkin-Lehner 3- 5- 31+ 47+ Signs for the Atkin-Lehner involutions
Class 109275q Isogeny class
Conductor 109275 Conductor
∏ cp 18 Product of Tamagawa factors cp
deg 241920 Modular degree for the optimal curve
Δ 722239453125 = 33 · 58 · 31 · 472 Discriminant
Eigenvalues -2 3- 5-  0  5  4  3 -3 Hecke eigenvalues for primes up to 20
Equation [0,1,1,-4708,-119006] [a1,a2,a3,a4,a6]
Generators [158:-1763:1] Generators of the group modulo torsion
j 29550530560/1848933 j-invariant
L 5.0237624430376 L(r)(E,1)/r!
Ω 0.57860456526684 Real period
R 0.48236383074629 Regulator
r 1 Rank of the group of rational points
S 0.99999999610416 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 109275e1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations