Cremona's table of elliptic curves

Curve 109395b1

109395 = 32 · 5 · 11 · 13 · 17



Data for elliptic curve 109395b1

Field Data Notes
Atkin-Lehner 3+ 5+ 11+ 13- 17+ Signs for the Atkin-Lehner involutions
Class 109395b Isogeny class
Conductor 109395 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 65536 Modular degree for the optimal curve
Δ 362644425 = 33 · 52 · 11 · 132 · 172 Discriminant
Eigenvalues -1 3+ 5+ -2 11+ 13- 17+ -8 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-2888,60442] [a1,a2,a3,a4,a6]
Generators [-37:358:1] [-20:341:1] Generators of the group modulo torsion
j 98630339207427/13431275 j-invariant
L 6.3327139515284 L(r)(E,1)/r!
Ω 1.6386856142074 Real period
R 0.96612704364858 Regulator
r 2 Rank of the group of rational points
S 0.99999999997374 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 109395f1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations