Cremona's table of elliptic curves

Curve 109725p1

109725 = 3 · 52 · 7 · 11 · 19



Data for elliptic curve 109725p1

Field Data Notes
Atkin-Lehner 3+ 5+ 7- 11+ 19+ Signs for the Atkin-Lehner involutions
Class 109725p Isogeny class
Conductor 109725 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 5598720 Modular degree for the optimal curve
Δ -1.5802609849807E+20 Discriminant
Eigenvalues -2 3+ 5+ 7- 11+  0  6 19+ Hecke eigenvalues for primes up to 20
Equation [0,-1,1,725592,-556305532] [a1,a2,a3,a4,a6]
j 2703837237489299456/10113670303876755 j-invariant
L 1.1103584272437 L(r)(E,1)/r!
Ω 0.092529904954243 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 21945r1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations