Cremona's table of elliptic curves

Curve 11011l1

11011 = 7 · 112 · 13



Data for elliptic curve 11011l1

Field Data Notes
Atkin-Lehner 7- 11- 13+ Signs for the Atkin-Lehner involutions
Class 11011l Isogeny class
Conductor 11011 Conductor
∏ cp 15 Product of Tamagawa factors cp
deg 118800 Modular degree for the optimal curve
Δ -1337668323316656331 = -1 · 75 · 118 · 135 Discriminant
Eigenvalues  1  2  1 7- 11- 13+  0  1 Hecke eigenvalues for primes up to 20
Equation [1,1,0,-163352,-61241737] [a1,a2,a3,a4,a6]
Generators [15538:1928473:1] Generators of the group modulo torsion
j -2248846192681/6240321451 j-invariant
L 8.1186738549609 L(r)(E,1)/r!
Ω 0.11012210117112 Real period
R 4.9149527470693 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 99099bt1 77077z1 11011g1 Quadratic twists by: -3 -7 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations