Cremona's table of elliptic curves

Curve 110124a1

110124 = 22 · 32 · 7 · 19 · 23



Data for elliptic curve 110124a1

Field Data Notes
Atkin-Lehner 2- 3+ 7+ 19- 23+ Signs for the Atkin-Lehner involutions
Class 110124a Isogeny class
Conductor 110124 Conductor
∏ cp 96 Product of Tamagawa factors cp
deg 245760 Modular degree for the optimal curve
Δ -71506575968688 = -1 · 24 · 33 · 74 · 194 · 232 Discriminant
Eigenvalues 2- 3+  0 7+  0  2  8 19- Hecke eigenvalues for primes up to 20
Equation [0,0,0,-17160,956097] [a1,a2,a3,a4,a6]
Generators [-96:1311:1] Generators of the group modulo torsion
j -1293575602176000/165524481409 j-invariant
L 7.1624282817891 L(r)(E,1)/r!
Ω 0.59668556919422 Real period
R 0.50015372832726 Regulator
r 1 Rank of the group of rational points
S 0.99999999889307 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 110124b1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations