Cremona's table of elliptic curves

Curve 110400fk2

110400 = 26 · 3 · 52 · 23



Data for elliptic curve 110400fk2

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 23+ Signs for the Atkin-Lehner involutions
Class 110400fk Isogeny class
Conductor 110400 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 678297600000000 = 223 · 32 · 58 · 23 Discriminant
Eigenvalues 2- 3+ 5+  0 -2  4 -6 -8 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-6280033,6059559937] [a1,a2,a3,a4,a6]
Generators [907:33300:1] [1453:-384:1] Generators of the group modulo torsion
j 6687281588245201/165600 j-invariant
L 10.088794490452 L(r)(E,1)/r!
Ω 0.37068435900493 Real period
R 3.4020839580526 Regulator
r 2 Rank of the group of rational points
S 1.0000000000276 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 110400dn2 27600cg2 22080cq2 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations