Cremona's table of elliptic curves

Curve 110400jn1

110400 = 26 · 3 · 52 · 23



Data for elliptic curve 110400jn1

Field Data Notes
Atkin-Lehner 2- 3- 5- 23- Signs for the Atkin-Lehner involutions
Class 110400jn Isogeny class
Conductor 110400 Conductor
∏ cp 96 Product of Tamagawa factors cp
deg 737280 Modular degree for the optimal curve
Δ -60445656000000000 = -1 · 212 · 33 · 59 · 234 Discriminant
Eigenvalues 2- 3- 5- -2  2  2 -2 -4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-171833,-29916537] [a1,a2,a3,a4,a6]
Generators [529:5244:1] Generators of the group modulo torsion
j -70138418624/7555707 j-invariant
L 8.0365891496161 L(r)(E,1)/r!
Ω 0.11653584431552 Real period
R 2.8734324886451 Regulator
r 1 Rank of the group of rational points
S 1.0000000002571 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 110400hb1 55200cb1 110400ha1 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations