Cremona's table of elliptic curves

Curve 11067d1

11067 = 3 · 7 · 17 · 31



Data for elliptic curve 11067d1

Field Data Notes
Atkin-Lehner 3+ 7- 17- 31- Signs for the Atkin-Lehner involutions
Class 11067d Isogeny class
Conductor 11067 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 18816 Modular degree for the optimal curve
Δ -546975551871 = -1 · 314 · 7 · 17 · 312 Discriminant
Eigenvalues  1 3+ -2 7-  0  0 17-  0 Hecke eigenvalues for primes up to 20
Equation [1,1,0,-22596,1298475] [a1,a2,a3,a4,a6]
j -1275993438638264137/546975551871 j-invariant
L 0.90869505402162 L(r)(E,1)/r!
Ω 0.90869505402162 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 33201j1 77469r1 Quadratic twists by: -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations