Cremona's table of elliptic curves

Curve 110838g1

110838 = 2 · 3 · 72 · 13 · 29



Data for elliptic curve 110838g1

Field Data Notes
Atkin-Lehner 2+ 3+ 7- 13+ 29- Signs for the Atkin-Lehner involutions
Class 110838g Isogeny class
Conductor 110838 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 4064256 Modular degree for the optimal curve
Δ 3.1314877739092E+19 Discriminant
Eigenvalues 2+ 3+ -1 7- -1 13+  4 -7 Hecke eigenvalues for primes up to 20
Equation [1,1,0,-2718398,1702842156] [a1,a2,a3,a4,a6]
Generators [-1889:11034:1] Generators of the group modulo torsion
j 18883167595005855961/266172068943144 j-invariant
L 3.3240559181923 L(r)(E,1)/r!
Ω 0.20899672533291 Real period
R 7.9524113628366 Regulator
r 1 Rank of the group of rational points
S 1.000000015501 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 15834h1 Quadratic twists by: -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations