Cremona's table of elliptic curves

Curve 110864q1

110864 = 24 · 132 · 41



Data for elliptic curve 110864q1

Field Data Notes
Atkin-Lehner 2- 13+ 41- Signs for the Atkin-Lehner involutions
Class 110864q Isogeny class
Conductor 110864 Conductor
∏ cp 24 Product of Tamagawa factors cp
deg 3386880 Modular degree for the optimal curve
Δ -1.8139066831343E+19 Discriminant
Eigenvalues 2- -3 -2 -2 -2 13+  0  0 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-2051491,1149386914] [a1,a2,a3,a4,a6]
Generators [1079:-13858:1] Generators of the group modulo torsion
j -48296148523713/917476352 j-invariant
L 2.2768585114607 L(r)(E,1)/r!
Ω 0.21829791208276 Real period
R 0.43458549207679 Regulator
r 1 Rank of the group of rational points
S 0.99999999053825 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 13858d1 8528f1 Quadratic twists by: -4 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations