Cremona's table of elliptic curves

Curve 110880bc1

110880 = 25 · 32 · 5 · 7 · 11



Data for elliptic curve 110880bc1

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 7+ 11- Signs for the Atkin-Lehner involutions
Class 110880bc Isogeny class
Conductor 110880 Conductor
∏ cp 64 Product of Tamagawa factors cp
deg 393216 Modular degree for the optimal curve
Δ 686198981160000 = 26 · 310 · 54 · 74 · 112 Discriminant
Eigenvalues 2+ 3- 5+ 7+ 11-  2  6 -4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-22053,22052] [a1,a2,a3,a4,a6]
Generators [-127:880:1] Generators of the group modulo torsion
j 25422557731264/14707625625 j-invariant
L 6.4962421493594 L(r)(E,1)/r!
Ω 0.43133596227512 Real period
R 3.7651869603105 Regulator
r 1 Rank of the group of rational points
S 0.9999999979487 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 110880dd1 36960bh1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations