Cremona's table of elliptic curves

Curve 111573z1

111573 = 32 · 72 · 11 · 23



Data for elliptic curve 111573z1

Field Data Notes
Atkin-Lehner 3- 7- 11+ 23+ Signs for the Atkin-Lehner involutions
Class 111573z Isogeny class
Conductor 111573 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 1843200 Modular degree for the optimal curve
Δ -265860622911545739 = -1 · 312 · 711 · 11 · 23 Discriminant
Eigenvalues -2 3- -1 7- 11+ -6 -2 -2 Hecke eigenvalues for primes up to 20
Equation [0,0,1,160377,-2074550] [a1,a2,a3,a4,a6]
Generators [385:-10805:1] Generators of the group modulo torsion
j 5319051554816/3099832659 j-invariant
L 1.4834650946457 L(r)(E,1)/r!
Ω 0.18316203691543 Real period
R 1.0123993953637 Regulator
r 1 Rank of the group of rational points
S 1.0000000075711 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 37191d1 15939d1 Quadratic twists by: -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations