Cremona's table of elliptic curves

Curve 112200n1

112200 = 23 · 3 · 52 · 11 · 17



Data for elliptic curve 112200n1

Field Data Notes
Atkin-Lehner 2+ 3+ 5- 11+ 17- Signs for the Atkin-Lehner involutions
Class 112200n Isogeny class
Conductor 112200 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 472320 Modular degree for the optimal curve
Δ -2769544800000000 = -1 · 211 · 32 · 58 · 113 · 172 Discriminant
Eigenvalues 2+ 3+ 5-  0 11+  1 17-  5 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,22792,2150412] [a1,a2,a3,a4,a6]
Generators [-67:564:1] Generators of the group modulo torsion
j 1636673230/3461931 j-invariant
L 5.9741927506971 L(r)(E,1)/r!
Ω 0.31430406647012 Real period
R 4.7519213143195 Regulator
r 1 Rank of the group of rational points
S 0.99999999667744 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 112200bz1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations