Cremona's table of elliptic curves

Curve 113680p1

113680 = 24 · 5 · 72 · 29



Data for elliptic curve 113680p1

Field Data Notes
Atkin-Lehner 2+ 5- 7- 29- Signs for the Atkin-Lehner involutions
Class 113680p Isogeny class
Conductor 113680 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 32256 Modular degree for the optimal curve
Δ -7275520 = -1 · 210 · 5 · 72 · 29 Discriminant
Eigenvalues 2+  2 5- 7-  1 -6  7  4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-240,1520] [a1,a2,a3,a4,a6]
j -30596356/145 j-invariant
L 4.7317942337588 L(r)(E,1)/r!
Ω 2.3658974648671 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 56840p1 113680a1 Quadratic twists by: -4 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations