Cremona's table of elliptic curves

Curve 114240kh2

114240 = 26 · 3 · 5 · 7 · 17



Data for elliptic curve 114240kh2

Field Data Notes
Atkin-Lehner 2- 3- 5- 7+ 17- Signs for the Atkin-Lehner involutions
Class 114240kh Isogeny class
Conductor 114240 Conductor
∏ cp 40 Product of Tamagawa factors cp
Δ 553199527641600000 = 212 · 32 · 55 · 710 · 17 Discriminant
Eigenvalues 2- 3- 5- 7+  4 -4 17- -4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-216105,14577975] [a1,a2,a3,a4,a6]
Generators [65:900:1] Generators of the group modulo torsion
j 272496055143618496/135058478428125 j-invariant
L 9.0220560542839 L(r)(E,1)/r!
Ω 0.25868345728601 Real period
R 3.4876818776151 Regulator
r 1 Rank of the group of rational points
S 0.99999999934956 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 114240hw2 57120d1 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations