Cremona's table of elliptic curves

Curve 11466ck1

11466 = 2 · 32 · 72 · 13



Data for elliptic curve 11466ck1

Field Data Notes
Atkin-Lehner 2- 3- 7- 13- Signs for the Atkin-Lehner involutions
Class 11466ck Isogeny class
Conductor 11466 Conductor
∏ cp 168 Product of Tamagawa factors cp
deg 32256 Modular degree for the optimal curve
Δ -210951651456 = -1 · 27 · 37 · 73 · 133 Discriminant
Eigenvalues 2- 3-  1 7- -5 13- -3  5 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-27887,1799543] [a1,a2,a3,a4,a6]
Generators [-33:1654:1] Generators of the group modulo torsion
j -9591639636223/843648 j-invariant
L 7.0416793252582 L(r)(E,1)/r!
Ω 0.95527332368478 Real period
R 0.043877241046326 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 91728fh1 3822o1 11466bx1 Quadratic twists by: -4 -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations