Cremona's table of elliptic curves

Curve 116160bi1

116160 = 26 · 3 · 5 · 112



Data for elliptic curve 116160bi1

Field Data Notes
Atkin-Lehner 2+ 3+ 5- 11+ Signs for the Atkin-Lehner involutions
Class 116160bi Isogeny class
Conductor 116160 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 22708224 Modular degree for the optimal curve
Δ 2.2148423073911E+24 Discriminant
Eigenvalues 2+ 3+ 5-  2 11+ -4  6  2 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-89760865,-319367090975] [a1,a2,a3,a4,a6]
j 129392980254539/3583180800 j-invariant
L 1.7687439027319 L(r)(E,1)/r!
Ω 0.049131767174956 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 9 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 116160in1 3630g1 116160bj1 Quadratic twists by: -4 8 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations