Cremona's table of elliptic curves

Curve 116160fr1

116160 = 26 · 3 · 5 · 112



Data for elliptic curve 116160fr1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 11- Signs for the Atkin-Lehner involutions
Class 116160fr Isogeny class
Conductor 116160 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 4257792 Modular degree for the optimal curve
Δ 2.3706377367552E+20 Discriminant
Eigenvalues 2- 3+ 5+ -3 11- -3 -1 -1 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-3000961,-1857786335] [a1,a2,a3,a4,a6]
Generators [-1219944:14698337:1331] Generators of the group modulo torsion
j 53189206081/4218750 j-invariant
L 2.7256685051725 L(r)(E,1)/r!
Ω 0.11528256191055 Real period
R 11.821685966073 Regulator
r 1 Rank of the group of rational points
S 1.0000000061015 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 116160di1 29040do1 116160fo1 Quadratic twists by: -4 8 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations