Cremona's table of elliptic curves

Curve 116800cw2

116800 = 26 · 52 · 73



Data for elliptic curve 116800cw2

Field Data Notes
Atkin-Lehner 2- 5- 73- Signs for the Atkin-Lehner involutions
Class 116800cw Isogeny class
Conductor 116800 Conductor
∏ cp 9 Product of Tamagawa factors cp
Δ 248970880000 = 210 · 54 · 733 Discriminant
Eigenvalues 2-  1 5- -2  6 -2 -6 -7 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-2633,45263] [a1,a2,a3,a4,a6]
Generators [-22:305:1] [74:511:1] Generators of the group modulo torsion
j 3155449600/389017 j-invariant
L 13.435350429085 L(r)(E,1)/r!
Ω 0.95177621317636 Real period
R 1.5684534802028 Regulator
r 2 Rank of the group of rational points
S 1.000000000276 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 116800bg2 29200bc2 116800bv2 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations