Cremona's table of elliptic curves

Curve 116886bh1

116886 = 2 · 3 · 7 · 112 · 23



Data for elliptic curve 116886bh1

Field Data Notes
Atkin-Lehner 2- 3+ 7- 11- 23- Signs for the Atkin-Lehner involutions
Class 116886bh Isogeny class
Conductor 116886 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 737280 Modular degree for the optimal curve
Δ 21685947478272 = 28 · 33 · 7 · 117 · 23 Discriminant
Eigenvalues 2- 3+ -2 7- 11-  6 -2 -4 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-121184,-16286335] [a1,a2,a3,a4,a6]
Generators [245512:2955349:512] Generators of the group modulo torsion
j 111097343765017/12241152 j-invariant
L 8.4793637045708 L(r)(E,1)/r!
Ω 0.25588279537397 Real period
R 8.2844215083277 Regulator
r 1 Rank of the group of rational points
S 0.99999999647876 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 10626a1 Quadratic twists by: -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations