Cremona's table of elliptic curves

Curve 117300h1

117300 = 22 · 3 · 52 · 17 · 23



Data for elliptic curve 117300h1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 17- 23- Signs for the Atkin-Lehner involutions
Class 117300h Isogeny class
Conductor 117300 Conductor
∏ cp 72 Product of Tamagawa factors cp
deg 241920 Modular degree for the optimal curve
Δ -9746163750000 = -1 · 24 · 3 · 57 · 173 · 232 Discriminant
Eigenvalues 2- 3+ 5+ -3 -5  2 17- -5 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-2758,161137] [a1,a2,a3,a4,a6]
Generators [-48:425:1] [72:575:1] Generators of the group modulo torsion
j -9283760896/38984655 j-invariant
L 8.8602597306467 L(r)(E,1)/r!
Ω 0.63292289048233 Real period
R 0.19442994522169 Regulator
r 2 Rank of the group of rational points
S 0.99999999999686 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 23460m1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations