Cremona's table of elliptic curves

Curve 11760cn1

11760 = 24 · 3 · 5 · 72



Data for elliptic curve 11760cn1

Field Data Notes
Atkin-Lehner 2- 3- 5- 7- Signs for the Atkin-Lehner involutions
Class 11760cn Isogeny class
Conductor 11760 Conductor
∏ cp 6 Product of Tamagawa factors cp
deg 3456 Modular degree for the optimal curve
Δ -135475200 = -1 · 212 · 33 · 52 · 72 Discriminant
Eigenvalues 2- 3- 5- 7-  0  1 -6  5 Hecke eigenvalues for primes up to 20
Equation [0,1,0,75,-477] [a1,a2,a3,a4,a6]
Generators [6:15:1] Generators of the group modulo torsion
j 229376/675 j-invariant
L 5.9766026441203 L(r)(E,1)/r!
Ω 0.94576564753158 Real period
R 1.0532212110754 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 735c1 47040dz1 35280dw1 58800fb1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations