Cremona's table of elliptic curves

Curve 117648ca1

117648 = 24 · 32 · 19 · 43



Data for elliptic curve 117648ca1

Field Data Notes
Atkin-Lehner 2- 3- 19- 43+ Signs for the Atkin-Lehner involutions
Class 117648ca Isogeny class
Conductor 117648 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 806400 Modular degree for the optimal curve
Δ -1096106410192896 = -1 · 212 · 311 · 19 · 433 Discriminant
Eigenvalues 2- 3- -3 -4 -2  2 -8 19- Hecke eigenvalues for primes up to 20
Equation [0,0,0,-151824,-22825424] [a1,a2,a3,a4,a6]
j -129615674355712/367083819 j-invariant
L 0.24181953364845 L(r)(E,1)/r!
Ω 0.12090960040207 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 7353n1 39216bg1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations