Cremona's table of elliptic curves

Curve 119970i2

119970 = 2 · 32 · 5 · 31 · 43



Data for elliptic curve 119970i2

Field Data Notes
Atkin-Lehner 2+ 3+ 5- 31+ 43- Signs for the Atkin-Lehner involutions
Class 119970i Isogeny class
Conductor 119970 Conductor
∏ cp 12 Product of Tamagawa factors cp
Δ -211639234880520 = -1 · 23 · 33 · 5 · 31 · 436 Discriminant
Eigenvalues 2+ 3+ 5-  0  4 -6  4 -4 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,14871,48373] [a1,a2,a3,a4,a6]
Generators [29:695:1] Generators of the group modulo torsion
j 13469889760845237/7838490180760 j-invariant
L 5.0671011712397 L(r)(E,1)/r!
Ω 0.33896408656351 Real period
R 1.245732044955 Regulator
r 1 Rank of the group of rational points
S 4.0000000588793 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 119970bh2 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations