Cremona's table of elliptic curves

Curve 120099n2

120099 = 3 · 72 · 19 · 43



Data for elliptic curve 120099n2

Field Data Notes
Atkin-Lehner 3- 7- 19+ 43+ Signs for the Atkin-Lehner involutions
Class 120099n Isogeny class
Conductor 120099 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 34631471292201 = 32 · 78 · 192 · 432 Discriminant
Eigenvalues  1 3-  2 7-  0 -2  2 19+ Hecke eigenvalues for primes up to 20
Equation [1,0,1,-93420,10978741] [a1,a2,a3,a4,a6]
Generators [317759:-1710318:2197] Generators of the group modulo torsion
j 766387439142697/294362649 j-invariant
L 11.832035408624 L(r)(E,1)/r!
Ω 0.64204065476653 Real period
R 9.2143973451433 Regulator
r 1 Rank of the group of rational points
S 0.99999999992516 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 17157a2 Quadratic twists by: -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations