Cremona's table of elliptic curves

Curve 120384ds3

120384 = 26 · 32 · 11 · 19



Data for elliptic curve 120384ds3

Field Data Notes
Atkin-Lehner 2- 3- 11- 19- Signs for the Atkin-Lehner involutions
Class 120384ds Isogeny class
Conductor 120384 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ -3.8557840149798E+21 Discriminant
Eigenvalues 2- 3- -2  0 11-  2 -2 19- Hecke eigenvalues for primes up to 20
Equation [0,0,0,2085684,2753415056] [a1,a2,a3,a4,a6]
Generators [589:64701:1] Generators of the group modulo torsion
j 5250513632788943/20176472892708 j-invariant
L 5.3324006618204 L(r)(E,1)/r!
Ω 0.099362606575062 Real period
R 6.7082587506901 Regulator
r 1 Rank of the group of rational points
S 1.0000000115205 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 120384s3 30096w3 40128bi3 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations