Cremona's table of elliptic curves

Curve 121275do1

121275 = 32 · 52 · 72 · 11



Data for elliptic curve 121275do1

Field Data Notes
Atkin-Lehner 3- 5+ 7- 11+ Signs for the Atkin-Lehner involutions
Class 121275do Isogeny class
Conductor 121275 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 302400 Modular degree for the optimal curve
Δ -14741052046875 = -1 · 36 · 56 · 76 · 11 Discriminant
Eigenvalues -2 3- 5+ 7- 11+  4  2  0 Hecke eigenvalues for primes up to 20
Equation [0,0,1,-3675,203656] [a1,a2,a3,a4,a6]
Generators [56:416:1] Generators of the group modulo torsion
j -4096/11 j-invariant
L 3.229183425872 L(r)(E,1)/r!
Ω 0.61931072631669 Real period
R 2.6070785243425 Regulator
r 1 Rank of the group of rational points
S 1.0000000114337 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 13475j1 4851l1 2475h1 Quadratic twists by: -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations