Cremona's table of elliptic curves

Curve 1220a1

1220 = 22 · 5 · 61



Data for elliptic curve 1220a1

Field Data Notes
Atkin-Lehner 2- 5+ 61+ Signs for the Atkin-Lehner involutions
Class 1220a Isogeny class
Conductor 1220 Conductor
∏ cp 6 Product of Tamagawa factors cp
deg 288 Modular degree for the optimal curve
Δ 24400 = 24 · 52 · 61 Discriminant
Eigenvalues 2-  0 5+  2 -6  6  2  4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-508,-4407] [a1,a2,a3,a4,a6]
j 906139090944/1525 j-invariant
L 1.5084291954125 L(r)(E,1)/r!
Ω 1.0056194636083 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 4880e1 19520k1 10980g1 6100a1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations