Cremona's table of elliptic curves

Curve 122199f1

122199 = 3 · 7 · 11 · 232



Data for elliptic curve 122199f1

Field Data Notes
Atkin-Lehner 3+ 7+ 11- 23- Signs for the Atkin-Lehner involutions
Class 122199f Isogeny class
Conductor 122199 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 253440 Modular degree for the optimal curve
Δ 239374032513 = 3 · 72 · 11 · 236 Discriminant
Eigenvalues -1 3+  2 7+ 11-  6 -2 -4 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-17997,-936486] [a1,a2,a3,a4,a6]
Generators [-3333890:2382276:42875] Generators of the group modulo torsion
j 4354703137/1617 j-invariant
L 4.222390751555 L(r)(E,1)/r!
Ω 0.41220103498879 Real period
R 10.243522850392 Regulator
r 1 Rank of the group of rational points
S 1.0000000072689 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 231a1 Quadratic twists by: -23


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations