Cremona's table of elliptic curves

Curve 122400cj1

122400 = 25 · 32 · 52 · 17



Data for elliptic curve 122400cj1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 17- Signs for the Atkin-Lehner involutions
Class 122400cj Isogeny class
Conductor 122400 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 884736 Modular degree for the optimal curve
Δ -5228296875000000 = -1 · 26 · 39 · 512 · 17 Discriminant
Eigenvalues 2- 3+ 5+ -4 -4 -2 17-  8 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-12825,3523500] [a1,a2,a3,a4,a6]
Generators [360:6750:1] Generators of the group modulo torsion
j -11852352/265625 j-invariant
L 4.1399305807351 L(r)(E,1)/r!
Ω 0.36114300380903 Real period
R 2.8658526951184 Regulator
r 1 Rank of the group of rational points
S 0.99999999458399 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 122400i1 122400c1 24480a1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations