Cremona's table of elliptic curves

Curve 122544ba1

122544 = 24 · 32 · 23 · 37



Data for elliptic curve 122544ba1

Field Data Notes
Atkin-Lehner 2- 3- 23+ 37+ Signs for the Atkin-Lehner involutions
Class 122544ba Isogeny class
Conductor 122544 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 73728 Modular degree for the optimal curve
Δ -274435817472 = -1 · 214 · 39 · 23 · 37 Discriminant
Eigenvalues 2- 3-  2 -1 -2 -2  0  2 Hecke eigenvalues for primes up to 20
Equation [0,0,0,1581,7058] [a1,a2,a3,a4,a6]
Generators [-1:74:1] Generators of the group modulo torsion
j 146363183/91908 j-invariant
L 7.3757430876625 L(r)(E,1)/r!
Ω 0.60670631941094 Real period
R 3.0392559265997 Regulator
r 1 Rank of the group of rational points
S 0.9999999972561 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 15318g1 40848g1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations