Cremona's table of elliptic curves

Curve 122544p2

122544 = 24 · 32 · 23 · 37



Data for elliptic curve 122544p2

Field Data Notes
Atkin-Lehner 2- 3+ 23+ 37- Signs for the Atkin-Lehner involutions
Class 122544p Isogeny class
Conductor 122544 Conductor
∏ cp 12 Product of Tamagawa factors cp
Δ -6011242145906688 = -1 · 218 · 39 · 23 · 373 Discriminant
Eigenvalues 2- 3+  0  1  0 -4  0 -8 Hecke eigenvalues for primes up to 20
Equation [0,0,0,7965,-3720222] [a1,a2,a3,a4,a6]
Generators [151:962:1] Generators of the group modulo torsion
j 693154125/74561216 j-invariant
L 6.0166057867972 L(r)(E,1)/r!
Ω 0.20165344000068 Real period
R 2.4863637936694 Regulator
r 1 Rank of the group of rational points
S 1.0000000069405 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 15318c2 122544t1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations