Cremona's table of elliptic curves

Curve 123200dc2

123200 = 26 · 52 · 7 · 11



Data for elliptic curve 123200dc2

Field Data Notes
Atkin-Lehner 2+ 5- 7- 11+ Signs for the Atkin-Lehner involutions
Class 123200dc Isogeny class
Conductor 123200 Conductor
∏ cp 8 Product of Tamagawa factors cp
Δ 3469312000 = 215 · 53 · 7 · 112 Discriminant
Eigenvalues 2+  0 5- 7- 11+ -2 -2 -6 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-1420,-20400] [a1,a2,a3,a4,a6]
Generators [44:48:1] Generators of the group modulo torsion
j 77308776/847 j-invariant
L 5.4354136621087 L(r)(E,1)/r!
Ω 0.77824252668768 Real period
R 3.4921077933406 Regulator
r 1 Rank of the group of rational points
S 1.0000000141661 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 123200cw2 61600cb2 123200ck2 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations