Cremona's table of elliptic curves

Curve 123704c2

123704 = 23 · 7 · 472



Data for elliptic curve 123704c2

Field Data Notes
Atkin-Lehner 2- 7+ 47- Signs for the Atkin-Lehner involutions
Class 123704c Isogeny class
Conductor 123704 Conductor
∏ cp 8 Product of Tamagawa factors cp
Δ 2389510239081039872 = 211 · 72 · 478 Discriminant
Eigenvalues 2-  0  0 7+ -2 -4  6 -2 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-4583675,-3776457802] [a1,a2,a3,a4,a6]
Generators [6612104245677590:-8284195585867267236:4212283375] Generators of the group modulo torsion
j 482445281250/108241 j-invariant
L 4.8012745503284 L(r)(E,1)/r!
Ω 0.10318152623399 Real period
R 23.266153819478 Regulator
r 1 Rank of the group of rational points
S 1.00000000603 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 2632b2 Quadratic twists by: -47


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations